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Short communication

Propyne hydrogenation: characteristics of a carbon-supported palladium
catalyst that exhibits a kinetic discontinuity effect
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Abstract

The hydrogenation of propyne over a 1 wt.% Pd/C catalyst that has previously been shown to exhibit a kinetic discontinuity effect for this
reaction has been studied under conditions below the transition point to evaluate the characteristics that permit dramatic changes in conversion
and selectivity as a function of hydrogen concentration.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Recent work from this group investigating propyne hydro-
enation over a carbon-supported palladium catalyst showed

hat the catalyst could be made to switch between two distinct
ctivity regimes by crossing a threshold hydrogen concentra-

ion [1]. This behavior was attributed to a kinetic disconti-
uity effect[2–5]. In order to improve our understanding of

he origins of this phenomenon, which can be used to max-
mize propene yields[1], this communication examines the
eaction characteristics of the same carbon-supported pal-
adium catalyst used in the original propyne hydrogenation
ontinuous-flow study[1]. Crucially, this paper only consid-
rs the low hydrogen concentration regime, where the hy-
rogen:propyne concentration does not exceed 3:1. Under

hese conditions, the catalyst has been shown to operate at
ow conversions with high propene selectivities[1] and does
ot exhibit discontinuous behavior. Thus, this paper defines
series of ‘benchmark’ conditions (reaction profile, order

f reaction, activation energies for propyne and propene hy-
rogenation, catalyst lifetime) against which any increase in

ous studies on this reaction system have indicated var
ity between catalysts offering similar specifications[6], the
performance of an additional Pd/C catalyst prepared
different procedure has also been examined and its p
mance is contrasted to that of the original Pd/C catalyst
catalytic behavior observed with hydrogen:propyne ra
greater than 3:1, where abrupt changes in propene yie
cur[1], have also been studied and will be reported elsew
[7].

Two 1% (w/w) Pd/C catalysts were used for this st
(hereafter denoted as Pd/C-1 and Pd/C-2). Pd/C-1 is th
alyst described previously, that was prepared by incip
wetness techniques[1]. Pd/C-2 was prepared by wet i
pregnation to evaluate the universality of the observa
reported for Pd/C-1. Both catalysts used palladium ni
as the precursor and Norit RX3 (surface area 1100 m2 g−1,
pore volume 0.64 cm3 g−1) as the support material. Carb
monoxide pulse chemisorption indicated a palladium dis
sion of 11.0 and 7.6% for Pd/C-1 and Pd/C-2, respecti
Assuming the metal particles are spheres of equal diam
the chemisorption results equate to respective mean
ropene yield can be evaluated. Furthermore, since previ-
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cle sizes of 9.7 and 14.1 nm. The catalytic activity towards
the gas phase hydrogenation of propyne was measured using
a continuous flow microreactor system described elsewhere
[1].
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Fig. 1. Conversion and selectivity as a function of time on stream for Pd/C-1
at 298 K and 2 bar, with a 3:1 hydrogen:propyne molar ratio.

2. Propyne hydrogenation over Pd/C-1

The typical reaction profile for a H2:C3H4 molar ratio of
3:1 is shown inFig. 1, where catalytic activity can be seen to
go through an initial non-steady state regime, during which
conversion increases with time on stream. This is attributed
to a gradual modification of the catalyst surface by depo-
sition and subsequent conditioning of a hydrocarbonaceous
overlayer, which results in the formation of a more active
surface[8,9]. After this stage, a relatively modest propyne
conversion of ca. 17% is achieved, that progressively di-
minishes to ca. 15% over a 4 h period. Importantly, during
both the non-steady state and steady-state regimes, the only
product is propene and there is no evidence for formation of
propane or any higher molecular weight C3 oligomers. Such
favourable propene selectivity (100%) matches that reported
for an earlier examination of alumina-, zirconia- and silica-
supported palladium catalysts operating under an identical
hydrogen:propyne ratio in pulse-flow mode[6]. However,
these observations contrast with comparable work on silica-
supported[8] and alumina-supported[9] palladium catalysts,
for which substantial quantities of propane formation are re-
ported. Collectively, the propene selectivity results indicate
a wide degree of variability between palladium-based cata-
lysts applied to the hydrogenation of propyne. The chemical
p low,
a ions
o

tion
o ation
a and
p ound
t

−

w
T
l era-

Fig. 2. Propyne conversion as a function of time on stream and increasing
hydrogen concentration for Pd/C-1. Reactions were performed for hydro-
gen:propyne molar ratios of 0.5:1–3:1 at 298 K and 2 bar.

ture range 298–373 K. The apparent activation energies de-
termined from the slope of the Arrhenius plots are 41.6± 1.1
and 58.7± 0.5 kJ mol−1 for the H2:C3H4 molar ratios of 1:1
and 3:1, respectively. These values broadly agree with the
range of activation energies previously reported for propyne
hydrogenation over palladium catalysts[10,11]. For the re-
action with an 1:1 H2:C3H4 mixture, it is interesting to note
that even at the highest conversions observed (ca. 63.8% at
373 K), 100% selectivity to propene is maintained. Similarly,
for the experiment with a 3:1 H2:C3H4 ratio in the tempera-
ture range 298–318 K, conversion increases in line with tem-
perature, with propene being the sole product. However, at
323 K the reaction rate displays a kinetic discontinuity where
the conversion increases rapidly to 100% and selectivity to
propene decreases to ca. 30% (not shown). As described in
Section1, a detailed analysis of the reaction profiles under
those conditions will be presented elsewhere[7].

Fig. 3 presents the activity profile for Pd/C-1 operating
with an equimolar hydrogen:propyne ratio over an 80 h pe-
riod. The low hydrogen concentration was selected to em-

F with
a st re-
r same
c

arameter responsible for this variability is examined be
lthough its precise origins in terms of preparative condit
r catalyst composition remains unresolved.

Fig. 2 presents the conversion of propyne as a func
f time on stream and increasing hydrogen concentr
t 298 K. The reaction order with respect to hydrogen
ropyne concentrations was determined at 298 K and f

o be respectively 0.93± 0.05 and 0.03± 0.02. Thus:

d[C3H4]

dt
= k[C3H4]0.03[H2]0.93 (1)

hich is in general agreement with previous work[6,10].
he activation energy for the reaction with H2:C3H4 mo-

ar ratios of 1:1 and 3:1 was determined over the temp
ig. 3. Propyne conversion as a function of time on stream for Pd/C-1
n equimolar hydrogen:propyne molar ratio at 298 K and 2 bar. Cataly
educed in situ after 80 h and then reaction performed again using the
onditions.
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phasize any deactivation processes apparent with this sys-
tem. Fig. 3 shows the propyne conversion to progressively
increase to a maximum of 9% conversion, which over a 60 h
period decreases to 8.0% (−0.013% h−1). In order to evalu-
ate the feasibility of regeneration strategies, the catalyst was
re-reduced in situ using the same procedure used for the ini-
tial reduction, and the reaction repeated (Fig. 3). Overall, the
reaction profile is similar to that observed in the first hydro-
genation cycle, however, maximum activity is achieved in
a shorter timescale and deactivation is somewhat more pro-
nounced, with the conversion dropping from a maximum of
ca. 8.5–6.0% over a 73 h period (−0.034% h−1). Through-
out these extended reaction times, complete selectivity to
propene was maintained. This observation is consistent with
an analysis of the pulse-flow reaction profiles, which show
that the processes primarily responsible for deactivation are
not directly coupled to the hydrogenation pathways[8].

3. Propene hydrogenation over Pd/C-1

At 298 K and 2 bar (the operating conditions used above),
with hydrogen to propene molar ratios ranging from 1:1 to
10:1, no products were detected by GC–MS. For the re-
action with H2:C3H6 = 1:1 no reaction was observed be-
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Fig. 4. Conversion and selectivity as a function of time on stream for Pd/C-2
at 298 K and 2 bar, with an equimolar hydrogen:propyne molar ratio.

with similar dispersions, demonstrate significantly different
catalytic properties towards propyne hydrogenation.

Figs. 1 and 4indicate that two carbon-supported palladium
catalysts of comparable physical specifications (i.e. metal
loading, dispersion and support material) have markedly dif-
ferent reaction profiles. Pd/C-1 exhibits low conversion and
high selectivity (5% conversion, 100% selectivity for an
equimolar mixture), whereas high conversions and low se-
lectivity are seen with Pd/C-2 (100% conversion, 35% selec-
tivity for an equimolar mixture). Differences in performance
for palladium-based propyne hydrogenation catalysts have
been reported previously, although the reasons for the differ-
ent activities have not been directly explored. Specifically,
Jackson and Casey report one alumina-supported palladium
catalyst to be completely inactive for propyne hydrogenation,
whilst another comparable catalyst was active and 100% se-
lective towards propene[6]. The majority of our efforts have
concentrated on Pd/C-1, which show it to be representative
of other catalysts used to hydrogenate propyne. Thus, given
that Pd/C-1 broadly conforms to the physical parameters of
other palladium based propyne hydrogenation catalysts, why
is Pd/C-1 completely selective to propene production and
why does the reaction profile for Pd/C-1 differ so widely
from that seen for Pd/C-2?

The propene hydrogenation studies on Pd/C-1 are in-
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ow 308 K, and an activation energy was determined
1.6± 1.7 kJ mol−1, which is approximately double the val

or propyne hydrogenation under similar conditions. The
ivation energy reported for propene hydrogenation and
nformation that propene is not hydrogenated at 298 K
ounts for the high selectivity displayed by Pd/C-1 towa
ropene during propyne hydrogenation. Supported palla
atalysts are normally active for alkene hydrogenation[12]
nd further investigations are required to establish the a
rigins of the elevated energetic barrier for alkene hy
enation exhibited by this substrate. It is noted that altho

he inability of Pd/C-1 to hydrogenate propene below 30
s surprising, it is not unprecedented. Jackson and Cas
orted similar behavior using a 1 wt.% Pd/ZrO2 catalyst tha
as active for propyne hydrogenation but the catalyst dem
trated no activity for propene hydrogenation up to 323 K[6].

. Propyne hydrogenation over Pd/C-2

Pd/C-2 was tested using an equimolar hydrogen:pro
atio at 298 K and 2 bar and the results are shown inFig. 4.
his catalyst displays high activity with propyne convers
eaching 100% after a short time on stream, although
ificantly, selectivity to propene is poor (ca. 35%), with
ain product being propane. Interestingly, in further con

o that seen for Pd/C-1 (Fig. 1), no deactivation is observe
t was not possible to determine an activation energy fo
eaction in view of the high activity displayed at the lo
st maintainable reactor temperature (298 K). Neverthe

t is clear from this comparison that the two Pd/C cataly
ormative. At 298 K propane formation was forbidden
quimolar and excess hydrogen mixtures. Elevated tem
ture studies revealed an activation energy of 82 kJ m−1,
hich defines the energetic barrier that is responsible

he high propene selectivity. This situation is indicative
wo distinct active sites. Following on from a rich histo
f investigations of ethyne hydrogenation, various wor
ave utilized multiple-site models to relate product distr

ions from alkyne hydrogenation reactions[13–16]. Previous
ork from this group has shown that the hydrogenatio
ropyne over an alumina-supported palladium catalys
e described within the context of a two-site model, with
ites modified by retained hydrocarbonaceous residue[9].
pecifically, Type I sites are responsible for full hydroge

ion of propyne to propane, whereas partial hydrogenatio
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propyne to propene occurs at Type II sites[17]. Thus, the ulti-
mate selectivity characteristics of the catalyst are determined
by the relative number of Type I and Type II sites present and
energetically accessible on the catalyst surface under reaction
conditions.

Within the context of the two-site model, the reaction pro-
file for Pt/C-1 (Fig. 1) can be interpreted in terms of only
Type II sites being energetically accessible on that catalyst
at 298 K. In contrast, both Type I and II sites are energeti-
cally accessible at 298 K for Pt/C-2. The small conversion
for Pt/C-1 (15% conversion for a hydrogen:propyne mixture
of 3:1) is then consistent with there being a small number
of Type II sites on the catalyst surface. The importance of
hydrogen concentration in influencing product distributions
is well established[1,8] and the high conversion observed
with Pd/C-2 will require an efficient hydrogen supply, which
necessitates a relatively larger area of bare palladium surface
(to effect hydrogen dissociative adsorption) than is envis-
aged for Pd/C-1. In this way, this scenario is moving the hy-
drocarbonaceous overlayer concept[9] closer to the two-site
model recently proposed by Borodskinki for C2 hydrogena-
tion, which invokes steric hindrance arguments applied to
pockets of bare metal surface to describe the composition of
the active sites[16]. Further spectroscopic work is required to
refine the precise nature of these sites. Nevertheless, the gen-
e o-site
r erved
t nation
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d
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p ysts:
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gies. An awareness of these parameters is essential to more
fully understand the concept of the kinetic discontinuities in
hydrogenation reactions reported for Pd/C-1[1] and other
supported metal catalysts[2–5].
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